Modification : Spacer 9
Catalog Reference Number
Category
Modification Code
5 Prime
3 Prime
Internal
Molecular Weight (mw)
Extinction Coeficient (ec)
Technical Info (pdf)
Absorbance MAX
Emission MAX
Absorbance EC
Catalog No | Scale | Price |
26-6440-05 | 50 nmol | $138.00 |
26-6440-02 | 200 nmol | $138.00 |
26-6440-01 | 1 umol | $180.00 |
26-6440-03 | 2 umol | $269.00 |
26-6440-06 | 5 umol | $810.00 |
26-6440-10 | 10 umol | $1,438.00 |
26-6440-15 | 15 umol | $1,797.00 |
Discounts are available for Spacer 9! |
Modification* Discount Price Structure |
1 site/order
|
List price
|
2 sites/order
|
10% discount
|
3 sites/order
|
20% discount
|
4 sites/order
|
30% discount
|
5-9 sites/order
|
50% discount
|
10+ sites/order
|
60% discount
|
*Exceptions apply
|
Spacer 9 is a triethylene glycol chain that is 9 atoms long (6 carbons + 3 oxygens), and is used to incorporate a spacer arm into an oligonucleotide. Spacer 9 can be incorporated in consecutive additions whenever a longer spacer is required. Spacer 9 has been used to form non-nucleotide bridges in hairpin loops in oligonucleotides (1), for linking oligonucleotides to epitopes for drug development (2), and for solid-phase immobilization of hybridization probes (3). Multiple incorporation of Spacer 9 has been used to form long, flexible linker arms between the two domains (double-helix forming and triple-helix forming, respectively) of a bifunctional DNA oligonucleotide, in order to maximize the binding flexibility of the two domains for their respective targets (4). This oligo was used to form a peptide nucleic acid (PNA)-DNA conjugate for use in site-directed recombination applications.
References
1. Nelson, J.S., Giver, L., Ellington, A.D., Letsinger, R.L. Incorporation of Non-Nucleotide Bridge into Hairpin Oligonucleotides Capable of High-Affinity Binding to the Rev Protein of HIV-1.
Biochemistry. (1996),
35: 5339-5344.
2. Palma, E., Klapper, D.G., Cho, M.J. Antibodies as Drug Carriers III: Design of Oligonucleotides with Enhanced Binding Affinity for Immunoglobulin G.
Pharm. Res. (2005),
22: 122-127.
3. Beattie, W.G., Meng, L., Turner, S.L., Varma, R.S., Dao, D.D., Beattie, K.L. Hybridization of DNA targets to glass-tethered oligonucleotide probes.
Mol. Biotechnol. (1995),
4: 213-225.
4. Rogers, F.A., Vasquez, K.M., Egholm, M., Glazer, P.M. Site-directed recombination via bifunctional PNA-DNA conjugates.
Proc. Natl. Acad. Sci. USA (2002),
99: 16695-16700.
- Spacer 9