In this section: Introduction | Quality Control | Purification | Modifications | Long Oligos | Price List
In this section: Introduction | Molecular Beacon FAQ's | Fluorescent Probes Price List | Other Fluorescent Molecular Probes
In this section: SPCT | DME SPCT Intro | Order DME TaqMan® Assays SPCT | SNP PCT Search | Gene Expression Assays | SPCT Design Center | GeneAssays
In this section: RNA Oligonucleotides | Quality Control | Purification | Modifications | RNAi Explorer™ Products and Prices | Custom RNAi | RNAi Design Guidelines | SmartBase™ siRNA Modifications | shRNA Explorer™
In this section: PCR Amplification & Analysis
In this section: Introduction | Genemer™ | GeneProber™ | Prober™ Gene Detection Kits | GScan™ Gene Detection Kits | Genemer™ Control DNA | Infectious Diseases
In this section: Gene Construction
In this section: Introduction | The Omni-Clean™ System | The Omni-Pure™ Plasmid Purification System | The Omni-Pure™ Genomic DNA Purification System | Viral DNA & RNA Purification | Microbial DNA Purification | Plant DNA Purification
In this section: Introduction | Quality Control | Purification | Modifications | Long Oligos | Price List
In this section: Introduction | Molecular Beacon FAQ's | Fluorescent Probes Price List | Other Fluorescent Molecular Probes
In this section: SPCT | DME SPCT Intro | Order DME TaqMan® Assays SPCT | SNP PCT Search | Gene Expression Assays | SPCT Design Center | GeneAssays
In this section: RNA Oligonucleotides | Quality Control | Purification | Modifications | RNAi Explorer™ Products and Prices | Custom RNAi | RNAi Design Guidelines | SmartBase™ siRNA Modifications | shRNA Explorer™
In this section: PCR Amplification & Analysis
In this section: Introduction | Genemer™ | GeneProber™ | Prober™ Gene Detection Kits | GScan™ Gene Detection Kits | Genemer™ Control DNA | Infectious Diseases
In this section: Gene Construction
In this section: Introduction | The Omni-Clean™ System | The Omni-Pure™ Plasmid Purification System | The Omni-Pure™ Genomic DNA Purification System | Viral DNA & RNA Purification | Microbial DNA Purification | Plant DNA Purification
5-hydroxy dC
Modification : 5-OH dC
Catalog Reference Number
Category
Modification Code
5 Prime
3 Prime
Internal
Molecular Weight (mw)
Extinction Coeficient (ec)
Technical Info (pdf)
Absorbance MAX
Emission MAX
Absorbance EC
26-6701
Epigenetics
[5-OH-dC]
Y
Y
Y
305.18
3.4
PS26-6701.pdf
-
-
-
Catalog No | Scale | Price | 26-6701-05 | 50 nmol | $385.00 | 26-6701-02 | 200 nmol | $385.00 | 26-6701-01 | 1 umol | $425.00 | 26-6701-03 | 2 umol | $525.00 | 26-6701-06 | 5 umol | $1,912.50 | 26-6701-10 | 10 umol | $3,398.00 | 26-6701-15 | 15 umol | $4,247.00 |
Discounts are available for 5-OH dC! |
Modification* Discount Price Structure |
1 site/order
|
List price
|
2 sites/order
|
10% discount
|
3 sites/order
|
20% discount
|
4 sites/order
|
30% discount
|
5-9 sites/order
|
50% discount
|
10+ sites/order
|
60% discount
|
*Exceptions apply
|
5-hydroxy deoxycytosine (5-OH-dC) is classified as an oxidized nucleotide, and is primarily used in studies of oxidative DNA damage and associated repair mechanisms. In the cell, 5-OH-dC DNA lesions are formed by reaction of cytosine with reactive oxygen species (ROS) generated either via normal oxidative metabolic processes or by UV ionizing radiation. 5-OH-dC can potentially mispair with both A and C (leading to C-to-T transitions or C-to-G transversions) (1). 5-OH-dC lesions can deaminate to form a second lesion, 5-hydroxy-deoxyuridine (5-OH-dU). As a single-base lesion, 5-OH-dC is removed by the base excision repair (BER) mechanism and the native cytosine base restored (2). However, the observation of 5-OH-dC in cellular DNA from liver, kidney and brain tissue at levels that remain relatively constant and high over time, suggests that the BER system is not completely effective at removing this lesion, and its presence in DNA may be a significant factor in both tumorigenesis and the aging process (3).
References
1. Feig, D.I., Sowers, L.C., Loeb, L.A. Reverse chemical mutagenesis: Identification of the mutagenic lesions resulting from reactive oxygen species-mediated damage to DNA. Proc. Natl. Acad. Sci. USA. (1994), 91: 6609-6613.
2. Nilsen, H., Krokan, H.E. Base excision repair in a network of defence and tolerance. Carcinogenesis (2001), 22: 987-998.
3. Wagner, J.R., Hu, C-C., Ames, B.N. Endogenous oxidative damage of deoxycytidine in DNA. Proc. Natl. Acad. Sci. USA. (1992), 89: 3380-3384.
- 5-hydroxy dC
|
|