SmartBaseTM siRNA Modification
Increasing Duplex Stability, Nuclease Resistance & Cell Permeation
Modification
|
Duplex Stability [Tm Increase]
|
Nuclease Resistance
|
Cell Permeation
|
Phosphorothioate
|
Slightly decreased
|
Increased
|
Slightly increased
|
2'-O Methyl
|
Increased
|
Increased
|
No effect
|
2'-Fluoro A and U
|
Increased [1-2o per substitution]
|
Increased
|
No effect
|
2-Amino-dA
|
Increased [3.0o per substitution]
|
No effect
|
No effect
|
5-Methyl-dC
|
Increased [1.3o per substitution]
|
No effect
|
No effect
|
3'-Cholesterol
|
No effect
|
No effect
|
Increased
|
3'-PEG
|
No effect
|
No effect
|
Increased
|
3'-Spacer 18
|
No effect
|
No effect
|
Increased
|
References
1. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-811.
2. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494-498.
3. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. & Khvorova, A. 2004. Rational siRNA design for RNA interference. Nat. Biotechnol. 22:326–330.
4. Amarzguioui, M., Lundberg, P., Cantin, E., Hagstrom, J., Behlke, M. & Rossi, J. 2006. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nature Protocols. 1:508-517.
5. Naito. Y., Yoshimura, J., Morishita, S. and Ui-Tei, K. 2009. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 10:392.
6. Wang, H., Ghosh, A., Baigude, H., Yang, C-S., Qiu, L., Xia, X., Zhou, H., Rana, T.M. and Xu, Z. 2008. Therapeutic Gene Silencing Delivered by a Chemically Modified Small Interfering RNA against Mutant SOD1 Slows Amyotrophic Lateral Sclerosis Progression. J. Biol. Chem. 283: 15845-5852.
7. Jackson, A. L., Burchard, J., Schelter, J., Chau, B.N., Cleary, M., Lim, L. and Linsey, P.S. (2006) Widespread siRNA ‘‘off-target’’ transcript silencing mediated by seed region sequence complementarity.RNA 12:1179–1187.
8. Bramsen, J.B., Laursen, M.B., Nielsen, A.F., et al. 2009. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 37:2867–2881.
9. Vaish, N., Chen, F., Seth, S. et al. 2011. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res. 39:1823–1832.
Appendix References:
1. B.S. Sproat, A.I. Lamond, B. Beijer, P. Neuner, and U. Ryder, Nucleic Acids Res., 1989, 17, 3373.
2. T. Imanishi, and S. Obika, Chem Commun (Camb), 2002, 1653-1659.
3. S. Obika, Y. Hari, M. Sekiguchi, and T. Imanishi, Angew Chem Int Ed, 2001, 40, 2079-2081.
4. A.A. Koshkin, et al., Tetrahedron, 1998, 54, 3607-3630.
5. M. Petersen, and J. Wengel, Trends Biotechnol, 2003, 21, 74-81.
6. A. Sabahi, J. Guidry, G.B. Inamati, M. Manoharan, and P. Wittung-Stafshede, Nucleic Acids Res., 2001, 29, 2163-2170.
7. T. Ono, M. Scalf, and L.M. Smith, Nucleic Acids Res., 1997, 25, 4581-4588.
*RNAi and siRNA
RNA interference (RNAi) is a specific and sequence dependent targeted gene silencing activity. RNAi acts by post transcriptional degradation of mRNA by small interfering RNAs (siRNA's) of the same sequence. The silencing approaches 100% and has to be empirically determined and optimized. Not every siRNA can effectively down regulate a gene. The process of RNA interference varies by individual siRNA while some do not exhibit any interference at all.
|